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A geometric realization of an abstract polyhedron P is a mapping that sends an

i-face to an open set of dimension i. This work adapts a method based on

Wythoff construction to generate a full rank realization of an abstract regular

polyhedron from its automorphism group �. The method entails finding a real

orthogonal representation of � of degree 3 and applying its image to suitably

chosen (not necessarily connected) open sets in space. To demonstrate the use of

the method, it is applied to the abstract polyhedra whose automorphism groups

are isomorphic to the non-crystallographic Coxeter group H3.

1. Introduction

A geometric polyhedron is typically described as a three-

dimensional solid of finite volume bounded by flat regions

called its facets. Well known examples of geometric polyhedra

include the five Platonic solids, which have been studied since

antiquity, and their various truncations and stellations

(Coxeter, 1973). Because of their mathematical and aesthetic

appeal, geometric polyhedra are widely used as models in

various fields of science and the arts (Senechal, 2013). In the

field of crystallography, they have been used in studying the

symmetry and structural formation of crystalline materials

(Schulte, 2014; Delgado-Friedrichs & O’Keeffe, 2017), nano-

tubes (Cox & Hill, 2009, 2011) and even viruses (Salthouse et

al., 2015).

In classical geometry, a facet is a convex or star polygon

bounded by line segments called edges and corner points

called vertices. The arranged facets enclose an open set (not

necessarily connected) in space called the polyhedron’s cell.

Shown in Fig. 1(a) is the Kepler–Poinsot star polyhedron

called the small stellated dodecahedron and denoted by f52 ; 5g.

The fraction 5
2 in this symbol means that each of the poly-

hedron’s facets is the union of five open triangular regions

(dimension 2) whose topological closure is a regular penta-

gram [Fig. 1(b)]. The number 5 in the symbol gives the number

of pentagrams that meet at each vertex of the polyhedron.

Fig. 1(c) shows the five pentagrams which meet at the topmost

vertex. Observe that these five pentagrams bound a pentagon-

based pyramidal solid. The union of the open interiors

(dimension 3) of 12 such pyramids makes up the cell of f52 ; 5g

[Fig. 1(d)].

Modern treatments of geometric polyhedra relax the clas-

sical conditions and allow facets that are surrounded by skew

or non-coplanar edges or facets that self-intersect, have holes,

or have no defined interiors (Grünbaum, 1994; Johnson, 2008).

In fact, there is no universally agreed definition of a geometric

polyhedron. The definition a work uses usually depends on the

author’s particular preferences, requirements and objectives.
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While there is no consensus on what constitutes a geometric

polyhedron, mathematicians generally agree on the conditions

one must impose on its underlying vertex–edge–facet–cell

incidence structure. This set of conditions defines a related

mathematical object called an abstract polyhedron. Essen-

tially, it is a partially ordered set of elements called faces that

play analogous roles to the vertices, edges and facets of its

geometric counterpart. Since an abstract polyhedron is

combinatorial in nature, it is devoid of metric properties and,

if regular (or at least highly symmetric), is best described by its

group of automorphisms or incidence-preserving face

mappings.

To lay out the foundation for a more rigorous treatment of

geometric polyhedra, Johnson (2008) proposed the concept of

a real polyhedron using an abstract polyhedron as blueprint.

In his theory, a real polyhedron is the realization or the

resulting figure when the faces of an abstract polyhedron are

mapped to open sets in space. These associated open sets are

selected so that they satisfy a set of conditions pertaining to

their boundaries and intersections. Although Johnson’s defi-

nition may not satisfy everyone’s requirements, anchoring it to

a well accepted concept makes it less ambiguous, and more

consistent with existing notions and theories.

In this work, we shall adopt a simplified version of John-

son’s real polyhedron for the definition of a geometric poly-

hedron. Our main objective is to adapt a method based on

Wythoff construction (Coxeter, 1973) to generate a geometric

polyhedron from a given abstract polyhedron P satisfying a

regularity property. The adapted method builds the figure by

applying the image of an orthogonal representation of the

automorphism group of P to a collection of open sets in space.

The method is formulated and stated in a way that is amenable

to algorithmic computations and suited to computer-based

graphics generation. This work extends and further illustrates

the ideas found in the work of Clancy (2005) and concretizes

the algebraic version of Wythoff construction found in

Chapter 5A of McMullen & Schulte (2002).

To illustrate the use of the method, we apply it to the

abstract regular polyhedra whose automorphism groups are

isomorphic to the non-crystallographic Coxeter group H3

(Humphreys, 1992). The group has order 120 and can be

described via the group presentation

H3 ¼ s0; s1; s2

���� s2
0 ¼ s2

1 ¼ s2
2 ¼ e;

ðs0s1Þ
3
¼ ðs1s2Þ

5
¼ ðs0s2Þ

2
¼ e

� �
: ð1Þ

Thus, H3 is the automorphism group of the (abstract) regular

icosahedron represented in the standard way. Since it is the

group of symmetries of icosahedral structures, H3 has played a

fundamental role in the study of mathematical models of

quasicrystals (Chen et al., 1998; Patera & Twarock, 2002),

carbon onions and carbon nanotubes (Twarock, 2002), and

viruses (Janner, 2006; Keef & Twarock, 2009).

2. Abstract regular polyhedra and string C-groups

We begin with a non-empty finite set P of elements called

faces that are partially ordered by a binary relation �. Two

faces F and F 0 in P are said to be incident if either F � F 0 or

F 0 � F. The incidence relations among the faces can be

graphically represented using a Hasse diagram in which a face
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Figure 1
(a) Small stellated dodecahedron f52 ; 5g. (b) Pentagram f52g. (c) Five pentagrams meeting at the topmost vertex of (a). (d) Exploded view of (a), front and
back, consisting of 12 pentagon-based pyramids.



is represented by a node and two nodes on adjacent levels are

connected by an edge if the corresponding faces are incident

[Fig. 2(a)]. Since a partial order is transitive, we shall omit

edges corresponding to implied incidences.

Given faces F� F 0, we define the section F 0/F of P to be the

set of all faces H incident to both F and F 0, that is, F 0/F =

fH 2 P j F � H � F 0g. Note that a section is also a partially

ordered set under the same binary relation.

A flag is a maximal totally ordered subset of P. Two flags

are adjacent if they differ at exactly one face. Finally, P is said

to be flag-connected if, for every pair of flags �, �, there is a

finite sequence of flags � = �0;�1; . . . ;�k = � such that

successive flags are adjacent.

2.1. Abstract polyhedra

For our purposes, we shall now restrict our discussion to

partially ordered non-empty finite sets P that satisfy the

following three properties:

(P1) P contains a unique least face and a unique greatest

face.

(P2) Each flag of P contains exactly five faces including the

least face and the greatest face.

(P3) P is strongly flag-connected. That is, each section of P

is flag-connected.

Properties P1 and P2 imply that any face F belongs to at

least one flag and that the number of faces, excluding the least

face, preceding it in any flag is constant. This constant, which

we assign to be�1 for the least face, is called the rank of F. We

shall call a face of rank i an i-face and denote it by Fi or Fi,j

(with index j for emphasis if there is more than one i-face).

Thus, we denote the least face by F�1 and the greatest face by

F3. When drawing a Hasse diagram, we shall adopt the

convention of putting faces of the same rank at the same level

and faces of different ranks at different levels arranged in

ascending order of rank.

A finite abstract polyhedron or a finite polytope of rank 3

(McMullen & Schulte, 2002) is a partially ordered finite set P

that satisfies properties P1, P2 and P3 above, and property P4,

also called the diamond property, below:

(P4) If Fi�1 � Fi+1, where 0 � i � 2, then there are precisely

two i-faces Fi in P such that Fi�1 � Fi � Fi+1.

This definition of an abstract polyhedron is, in fact, a specific

case of the more general definition of an abstract n-polytope

or polytope of rank n. By the rank of a polytope, we mean the

rank of its greatest face. Borrowing terms from the theory of

geometric polytopes, we shall refer to the �1-face of an

abstract polyhedron as the empty face, a 0-face as a vertex, a

1-face as an edge, a 2-face as a facet and the 3-face as the cell

(here, ‘cell’ is not meant to imply homeomorphism with a

3-ball).

2.2. String C-groups

We can endow an abstract polyhedron P with an algebraic

structure by defining a map on its faces that preserves both

ranks and incidence relations. A bijective map � : P ! P is
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Figure 2
(a) Hasse diagram of a section of {5, 3}*120. Geometric (b) vertices, (c) edges, (d) facet corresponding to abstract faces that appear in the diagram. (e)
Regular pentagram obtained by combining the geometric faces in (a)–(d). (f) The regular pentagram in (e) with straight edges replaced by circular arcs.



called an automorphism if it is incidence-preserving on the

faces:

F � F 0 if and only if �ðFÞ � �ðF 0Þ: ð2Þ

Using the properties of P, it is easy to verify that an auto-

morphism is necessarily rank-preserving as well. By conven-

tion, we shall use the right action notation F� for the image

�(F). We shall denote the group of all automorphisms of P by

�ðPÞ, or just � when P is clear from the context.

An abstract polyhedron P is said to be regular if � acts

transitively on its set of flags. Consequently, if P is regular, one

can verify that the number p of vertices incident to a facet and

the number q of facets incident to a vertex are both constant.

These determine the (Schläfli) type {p, q} of the regular

polyhedron. Following the notation used in the Atlas of Small

Regular Polytopes (Hartley, 2006), we denote by {p, q}*mx a

regular polyhedron of type {p, q} with automorphism group of

order m. The index x, when present, distinguishes a poly-

hedron from other polyhedra of the same type with auto-

morphism group of the same order.

For a regular polyhedron of type {p, q}, the automorphism

group is a rank-3 string C-group of type {p, q} and is best

described as a pair (�, T), which consists of a group � and an

ordered triple T of distinct generating involutions t0, t1, t2 that

satisfy three properties:

(i) String property: t0t2 = t2t0.

(ii) Intersection property: ht0, t1i \ ht1, t2i = ht1i.

(iii) Order property: ord(t0t1) = p, ord(t1t2) = q.

Two string C-groups (�, {t0, t1, t2}) and (�0, {t00; t01; t02}) are

considered equivalent if they have the same type and the map

determined by ti 7!t0i for 0 � i � 2 is a group isomorphism.

Since equivalence of string C-groups is dependent on the

distinguished generating triples, we emphasize that two string

C-groups may be considered distinct even if they are

isomorphic as abstract groups.

A fundamental result in the theory of abstract polytopes is

the bijective correspondence between regular polyhedra and

rank-3 string C-groups. It follows that the enumeration of

regular polyhedra is equivalent to the enumeration of rank-3

string C-groups. Thus, given an arbitrary group �, one may

determine all regular polyhedra with automorphism group

isomorphic to � by listing all generating triples T of

distinct involutions t0, t1, t2 that satisfy the string and inter-

section conditions. For groups of relatively small order, it is

straightforward to implement a listing procedure to accom-

plish this task in the software GAP (The GAP Group,

2019). We apply this procedure to the non-crystallographic

Coxeter group H3 and obtain 15 abstract regular H3 poly-

hedra, with each belonging to one of nine types, as summar-

ized in Table 1.

2.3. Coset-based construction method

Given a string C-group (�, T), one may construct an

abstract regular polyhedron P with automorphism group �.

This is done by defining the cosets of certain subgroups of � as

the faces of P and partially ordering these cosets using a

suitably chosen binary relation. In the theorem below, we

employ the construction method in Chapter 2E of McMullen

& Schulte (2002).

Theorem 2.1. Suppose (�, {t0, t1, t2}) is a string C-group of

type {p, q}. Let ��1 = �, �3 = � and �i = htk j k 6¼ ii for 0 �

i � 2. Then the following sequence of steps produces an

abstract regular polyhedron P of type {p, q} and auto-

morphism group �:

(i) Generate a complete list of right coset representatives

�i; j of �i indexed by 1 � j � [� : �i] for �1 � i � 3.

(ii) Define P to be the set consisting of F�1 = F�1,1 = ��1, F3

= F3,1 = �3 and Fi,j = �i� i,j.

(iii) Define a binary relation � on P where Fi;j � Fi0;j0 if and

only if i � i 0 and �i�i; j \ �i0�i0; j0 6¼ ;.

Moreover, the number of i-faces of P is equal to the index

of �i in �.

As a consequence of this theorem, we may identify a regular

polyhedron P with � and an i-face Fi; j with a coset repre-

sentative �i; j of �i. For simplicity, we may assume this repre-
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Table 1
The abstract regular H3 polyhedra with automorphism group generated by T = {t0, t1, t2}.

P t0 t1 t2 dimWð’1; ðH3;TÞÞ dimWð’2; ðH3;TÞÞ

{3, 5}*120 s0 s1 s2 1 1
{3, 10}*120a s0 s1 s0s2 0 0
{3, 10}*120b s0s2 (s1s2)2s0s1s2s1 s0 0 0
{5, 3}*120 s2 s1 s0 1 1
{5, 5}*120 s0 s1s2s1 s2 1 1
{5, 6}*120b s0 s1s2s1 s0s2 0 0
{5, 6}*120c s0s2 s1s0s2s1 s2 0 0
{5, 10}*120a s0 s1s2s1 (s1s0s2)4s1s0 0 0
{5, 10}*120b s0s2 s1s0s2s1 s0 0 0
{6, 5}*120b s0 (s1s0s2)3s1 s0s2 0 0
{6, 5}*120c s0s2 s1s2s1 s0 1 1
{10, 3}*120b s0s2 s1 s0 1 1
{10, 3}*120c s0 s1s0s2s1 (s1s0s2)4s1s0 0 0
{10, 5}*120a s0 s1s0s2s1 s0s2 0 0
{10, 5}*120b s0s2 s1 s2 1 1



sentative is the identity e when j = 1 and call Fi; 1 the base

i-face.

We further remark that if P0 is a regular polyhedron whose

automorphism group is described by the same string C-group

(�, T), then the constructed polyhedron P in the theorem is

actually isomorphic to P0.

The Hasse diagram in Fig. 2(a) is a section of the H3

polyhedron {5, 3}*120 in Table 1 consisting of a single empty

face, 20 vertices, 30 edges, 12 facets and a single cell. This

polyhedron, which is called the standard (abstract) regular

dodecahedron, results from applying Theorem 2.1 to the string

C-group ðH3; fs2; s1; s0gÞ.

3. Regular geometric polyhedra and Wythoff
construction

Consider a finite abstract regular polyhedron P whose set of

abstract i-faces is P i , where � 1 � i � 3. Let � be its auto-

morphism group with distinguished generating triple T =

{t0, t1, t2}. By an open set of dimension 0 � i � n in the

Euclidean n-space En, we mean a subset that is homeomorphic

to a subset of Ei which is open in the usual sense. We denote by

OðE
n
Þ the set of all such open subsets including the empty

set ;.

3.1. Regular geometric polyhedra

Define the map ��1 : P�1 !OðE
n
Þ that sends the empty

face F�1 to the empty set O�1 = ;. Then for each 0 � i � 3,

recursively define a map �i : P i !OðE
n
Þ that sends each

i-face Fi; j with index 1 � j � [� : �i] to a non-empty open set

Oi; j of dimension i. We require that the boundary of Oi; j be

[0�k<ið[Fk; l�Fi; j
Ok; lÞ, the union of the �k images of the lower-

rank k-faces Fk; l incident to Fi; j.

Illustration 3.1. We illustrate the images of the i-faces of

{5, 3}*120 that appear in the section represented by the Hasse

diagram in Fig. 2(a). These images partially determine maps �i

for 0 � i � 2.

Take the points O0; j , 1 � j � 5, in E3 [Fig. 2(b)] and let �0

send each vertex F0; j toO0; j, �1 send each edge F1; j to the open

line segment O1; j in Fig. 2(c), and �2 send the facet F2; 1 to the

disconnected open setO2; 1 in Fig. 2(d). We remark thatO2; 1 is

simply the disjoint union of the five open triangular regions

that make up the star-shaped decagon in Fig. 2(d).

When these open sets of different dimensions are

combined, we obtain the pentagram shown in Fig. 2(e).

Choosing open circular arcs as the images of the edges instead,

and the disjoint union of suitably chosen open regions as the

image of the lone facet, we obtain the figure illustrated in

Fig. 2(f).

The mapping � : P ! OðEn
Þ whose restriction to P i is �i is

called a geometric realization of P. To simplify the discussion,

we limit ourselves to when n = 3, in which case � is called a

realization of full rank. To distinguish between an i-face in P

and its image under �, we call the former an abstract i-face and

the latter the realization of this abstract i-face, or a geometric

i-face. Note that the rank of an abstract face corresponds to

the dimension of a geometric face in a realization. We now

refer to the union of the geometric faces, which we denote by

�ðPÞ, as a regular geometric polyhedron or, after identifying �
with its image, a geometric realization of P.

We remark that the definition of a realization stated above

is an interpretation of the standard definition (Chapter 5A of

McMullen & Schulte, 2002) in which abstract vertices are

identified as points in space, edges as pairs of points, facets as

sets of these pairs, and the cell as a collection of these sets of

pairs. The standard definition, therefore, provides a blueprint

to build a geometric polyhedron starting from its vertices and

lets one exercise the freedom to choose Euclidean figures to

represent abstract faces. Taking advantage of this freedom, we

specify that abstract faces be associated to open sets with the

appropriate dimension and boundary. This is to make the

notion of a realization as wide-ranging as possible in order to

cover typical figures representing known geometric polyhedra

such as regular convex and star polyhedra. As we will see later,

this will also allow one to generate polyhedra using curved

edges and surfaces. Our definition of a realization is, in fact,

consistent with the theory of real polytopes formulated by

Johnson (2008). Essentially, Johnson defines a realization to

be an assembly of open sets in space with imposed restrictions

pertaining to their boundaries and intersections.

3.2. Wythoff construction

A faithful realization � is one where each induced map �i is

injective. That is, distinct abstract i-faces Fi; j are sent to

distinct geometric i-faces Oi; j . It follows that there is a bijec-

tive correspondence between the set of Fi; j’s and the set of

Oi; j’s that preserves ranks and incidence relations in the

former, and dimensions and boundary relations in the latter.

A symmetric realization, on the other hand, is one where

each automorphism � 2 � corresponds to an isometry of E3

that symmetrically permutes the Oi; j’s. More specifically, since

P is assumed to be finite, a symmetric realization presupposes

the existence of an orthogonal representation ’ : � ! O(3)

that satisfies

�iðImð�; Fi; jÞÞ ¼ Imð’ð�Þ; �iðFi; jÞÞ ¼ Imð’ð�Þ; Oi; jÞ; ð3Þ

where Im(f, x) for a map f simply denotes the image f(x).

We recall that ’(�) acts on E3 and preserves the usual

Euclidean inner product. Consequently, for a fixed orthogonal

basis, we may represent each � with a 3 � 3 real orthogonal

matrix. We denote the image ’(�) of this representation by

Gð�ðPÞÞ, or just G when �ðPÞ is clear from the context. We

remark that G is the symmetry group of the geometric poly-

hedron whenever � itself is faithful and symmetric. Such a

realization always implies that ’ is faithful:

Proposition 3.1. Let � be a faithful symmetric realization of

P. If ’ : � ! O(3) is the associated orthogonal representa-

tion, then ’ is faithful.
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Proof. It suffices to show that if ’(�) is the identity isometry

�, then � is the identity automorphism e. By equation (3), we

have

�iðImð�; Fi; jÞÞ ¼ Imð’ð�Þ; �iðFi; jÞÞ ¼ Imð�; �iðFi; jÞÞ ¼ �iðFi; jÞ;

ð4Þ

for any abstract i-face Fi; j . Thus, �iðImð�; Fi; jÞÞ ¼ �iðFi; jÞ,

which is equivalent to Imð�; Fi; jÞ ¼ Fi; j by faithfulness of �.

Since Fi; j is arbitrary, � must be e. Consequently, ’ is faithful.
&

From this point forward, we restrict ourselves to realiza-

tions � which are both faithful and symmetric. With these

properties not only do we have a correspondence between

abstract and geometric faces, we also have a correspondence

between the action of the automorphism group on the abstract

faces and the action of the symmetry group on the corre-

sponding geometric faces. Consequently, any geometric poly-

hedron obtained from � will automatically satisfy regularity or

transitivity of geometric flags. Thus, to construct �, we must

employ a faithful orthogonal representation by Proposition

3.1. The group H3 has two such irreducible representations

(Koca & Koca, 1998),

’1 : s0 7!

�1 0 0

0 1 0

0 0 1

2
64

3
75; s1 7!

1

2

1 �� ��

�� � 1

�� 1 �

2
64

3
75;

s2 7!

1 0 0

0 �1 0

0 0 1

2
64

3
75; ð5Þ

’2 : s0 7!

�1 0 0

0 1 0

0 0 1

2
64

3
75; s1 7!

1

2

1 �� ��

�� � 1

�� 1 �

2
64

3
75;

s2 7!

1 0 0

0 �1 0

0 0 1

2
64

3
75; ð6Þ

where � = (1 + 51/2)/2 and � = (1 � 51/2)/2.

We now describe an explicit construction method in

Theorem 3.1 to obtain a realization of a polyhedron from a

string C-group (�, T). Recall earlier that we may identify an

i-face Fi; j with a coset representative �i; j of �i.

Theorem 3.1. Let ð�; TÞ be a string C-group which char-

acterizes the automorphism group of an abstract regular

polyhedron P and let ’ be a faithful irreducible orthogonal

representation of �. Then the following sequence of steps

produces a faithful symmetric realization � of P:

(i) Generate a complete list of right coset representatives � i,j

of �i with index 1 � j � [� : �i] for 0 � i � 3.

(ii) Compute the matrix representations ’ð�i; jÞ of the coset

representatives �i; j.

(iii) Compute the Wythoff space

Wð’; ð�; TÞÞ ¼ fx 2 E3
j Imð’ðt1Þ; xÞ ¼ Imð’ðt2Þ; xÞ ¼ xg

ð7Þ

associated with the pair (’, (�, T)). This space consists of

points in E3 that are fixed by both ’(t1) and ’(t2).

(iv) Suppose dimWð’; ð�; TÞÞ> 0. Pick a point

x 2 Wð’; ð�; TÞÞ and let O0; 1 be x.

(v) For 1 � i � 3:

(a) Determine the indexing set Ji = {j j �i�1�i�1; j \ �i 6¼ ;}.

(b) Compute the open setsOi�1; j = Imð’ð�i�1; jÞ;Oi�1; 1Þ for

each j 2 Ji.

(c) Let Oi; 1 be an open set of dimension i that is bounded

by Oi�1; j for j 2 Ji and has Gi = ’(�i) as its stabilizer in G.

(vi) For 0 � i � 3, define �i to be the map P i !OðE
n
Þ that

sends each Fi,j to Oi; j = Imð’ð�i; jÞ;Oi; 1Þ for 1 � j � [� : �i].

(vii) Define � to be the map P ! OðEn
Þ whose restriction

to P i is �i.

Proof. To prove the theorem, we need only show that �
is faithful and symmetric. To this end, let � 2 � and

Fi; j;Fi; k 2 P i.

Suppose that �iðFi; jÞ ¼ �iðFi; kÞ. That is, two abstract i-faces

are sent to the same open set of dimension i. By the definition

of Oi; j in step (vi), we obtain

�iðFi; jÞ ¼ Imð’ð�i; jÞ;Oi;1Þ and �iðFi; kÞ ¼ Imð’ð�i; kÞ;Oi;1Þ;

ð8Þ

which implies that ’ð�i; j�
�1
i; kÞ stabilizes Oi; 1. Since Oi; 1 is

chosen so that it has Gi as its stabilizer in G, we must have

�i; j�
�1
i; k 2 �i. Thus, �i�i; j = �i�i; k or, equivalently, Fi; j = Fi; k.

Hence, � is faithful.

To show that � is symmetric as well, let Imð�; Fi; jÞ = Fi; k. It

follows that ð�i�i; jÞ� = �i�i; k and so � = ��1
i; j ��i; k for some

� 2 �i. The image of Oi; j under ’(�) is

Imð’ð�Þ;Oi; jÞ ¼ Imð’ð��1
i; j ��i; kÞ;Oi; jÞ

¼ Imð’ð��1
i; j Þ ’ð�Þ ’ð�i; kÞ;Oi; jÞ

¼ Imð’ð�Þ ’ð�i; kÞ;Oi;1Þ

¼ Imð’ð�i; kÞ;Oi;1Þ; ð9Þ

where each component of ’ð��1
i; j Þ’ð�Þ ’ð�i; kÞ is sequentially

applied to Oi; j from left to right to conform with the right

action of � on Pi. We then have

�iðImð�; Fi; jÞÞ ¼ �iðFi; kÞ ¼ Oi; k ¼ Imð’ð�i; kÞ;Oi;1Þ

¼ Imð’ð�Þ;Oi; jÞ: ð10Þ

Hence, � is symmetric. &

Based on the above proof, it is important to remark that the

imposition that the base geometric i-face Oi;1 be chosen so

that its stabilizer in G is Gi guarantees that the resulting

realization � will still be faithful, even if the base abstract

i-face Fi;1 is not uniquely determined by the abstract (i � 1)-

faces incident to it. In particular, it is possible to construct a

faithful symmetric realization of an abstract regular poly-
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hedron such as a hosohedron {2, q}*4q, which has q abstract

edges incident to its two abstract vertices, or a dihedron

{p, 2}*4p, which has two abstract facets incident to its p

abstract edges. For instance, to obtain a faithful symmetric

realization of {2, q}*4q, one may use an open spherical great

semicircle (whose stabilizer is isomorphic to the dihedral

group D2) but not an open line segment (whose stabilizer is

the whole group G) as the image of an abstract edge.

The procedure described in Theorem 3.1 is an algebraic

version of the method of Wythoff construction (Chapter 5A of

McMullen & Schulte, 2002) named after the Dutch mathe-

matician Willem Abraham Wythoff. His original geometric

version is used to construct uniform tessellations. It relies on a

kaleidoscope-like setup in which three reflection mirrors

bound what becomes a fundamental triangle of the resulting

tessellation (Coxeter, 1973). In Theorem 3.1, the fixed spaces

of the generators in T, which may not necessarily be reflec-

tions, play the role of the mirrors.

For a string C-group of type {p, q}, we may compute the

dimension of the Wythoff space using the formula (Clancy,

2005)

dimWð’; ð�; TÞÞ ¼
1

2q

X
�2ht1;t2i

Tr’ð�Þ; ð11Þ

where Tr’(�) denotes the trace of ’(�). We note that if

dimWð’; ð�; TÞÞ = 0, we do not obtain any realization via

Theorem 3.1. If dimWð’; ð�; TÞÞ = 1, on the other hand, any

two choices for the base geometric vertex will just be scalar

multiples of each other. It follows that a one-dimensional

Wythoff space produces only algebraically equivalent reali-

zations. Different choices for the open image of a face,

however, may yield polyhedra that are topologically different.

Illustration 3.2. We now illustrate the use of Theorem 3.1 to

create a realization �st of the standard (abstract) regular

dodecahedron {5, 3}*120 with automorphism group � = H3

generated by the triple T consisting of t0 = s2, t1 = s1, t2 = s0.

Employing the representation ’2, we have the following

generating matrices for G = ’2(�):

’2ðt0Þ ¼

1 0 0

0 �1 0

0 0 1

2
64

3
75;

’2ðt1Þ ¼
1

2

1 �� ��

�� � 1

�� 1 �

2
64

3
75;

’2ðt2Þ ¼

�1 0 0

0 1 0

0 0 1

2
64

3
75:

ð12Þ

These three generators correspond to reflections of E3, with

the first and third having the xz plane and yz plane, respec-

tively, as mirrors.

For each 0 � i � 3, we use GAP to generate a complete list

of right coset representatives �i; j of �i, where 1 � j � [� : �i],

and their corresponding matrix representations ’2ð�i; jÞ.

By formula (11), we obtain dimWð’; ð�; TÞÞ = 1. We

compute the Wythoff space by finding a basis for the inter-

section of the 1-eigenspaces of ’2(t1) and ’2(t2). Using the

Zassenhaus algorithm to compute for a basis for this inter-

section yields Wð’2; ð�; TÞÞ = span{(0, 1, 1 + �)} � E3.

As explained earlier, we construct the base geometric i-face

Oi;1 for 1 � i � 3 taking into account not only Oi�1;1 but also

the realizationsOi�1; j of the (i� 1)-faces �i�1; j incident to �i; 1.

This ensures that, at each stage, Oi; 1 is bounded by these

Oi�1; j’s as required by the definition of a realization.

In addition, Oi; 1 must be chosen carefully so that its stabilizer

is Gi.

(i) Base geometric vertex: pick the point (0, 1, 1 + �) in the

Wythoff space and let this be O0; 1.

(ii) Base geometric edge: aside from �0; 1 = e, only the vertex

�0; 2 = t0 is incident to the base edge �1; 1 = e. We define O1;1 to

be the open line segment [Fig. 3(a)] whose endpoints are O0;1

and O0;2 = Imð’2ðt0Þ; O0;1Þ = ð0;�1; 1þ �Þ. This segment is

stabilized by G1, with ’2(t0) interchanging these endpoints and

’2(t2) fixing them.

(iii) Base geometric facet: there are five edges incident to

the base facet �2;1 = e. These are �1;1 = e, �1;2 = t0t1, �1;3 = ðt0t1Þ
2,

�1;4 = t1t0t1 and �1;5 = t0t1. We defineO2;1 to be the open regular

pentagram [Fig. 3(a)] bounded by the segments O1; j =

Imð’2ð�1; jÞ;O1;1Þ for 1� j� 5 with endpointsO0;1,O0;2,O0;3 =

(�, ��, �), O0;4 = (1 + �, 0, 1), O0;5 = (�, �, �) as shown in the
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Figure 3
(a) The base geometric vertex, edge and facet of �st({5, 3}*120).
(b) The base geometric cell of �st({5, 3}*120) with icosahedral hole. (c)
Union of the geometric vertices and edges of �st({5, 3}*120). (d)
Spherical realization �sp({5, 3}*120) circumscribing the star realization
�st({5, 3}*120).



figure. It is straightforward to verify that this pentagram is

stabilized by G2 with ’2(t0) fixing O1;1, ’2(t1) fixing O1; 3 and

either symmetry permuting the remaining segments.

(iv) Base geometric cell: there are 12 facets incident to the

base cell �3;1 = e. These are �2;1 = e, �2;2 = t2, �2;3 = t1t2, �2;4 =

t0t1t2, �2;5 = t1t0t1t2, �2;6 = t2t1t0t1t2, �2;7 = ðt0t1Þ
2
t2, �2;8 = t0t2t1t0t1t2,

�2;9 = t1t0t2t1t0t1t2, �2;10 = t0t1t0t2t1t0t1t2, �2;11 = ðt1t0Þ
2
t2t1t0t1t2 and

�2;12 = t2ðt1t0Þ
2
t2t1t0t1t2. We define O3 to be the open set

[Fig. 3(b)] bounded by the open pentagrams O2; j =

Imð’2ð�2; jÞ;O2;1Þ for 1 � j � 12. The set O3 is the disjoint

union of 20 open triangular pyramids whose bases form the

bounding surface of a regular icosahedron. We can thus

informally describe O3 as an open ‘spiky’ solid with an

icosahedral hole at its core. It will follow that O3 is stabilized

by G after verifying that each generator of G either fixes a

bounding pentagram or sends it to another one.

The resulting geometric polyhedron �st({5, 3}*120) is

obtained by getting the union of the geometric vertices and

edges [Fig. 3(c)] and the geometric facets and cell [Fig. 3(b)].

We call this geometric realization the great stellated dodeca-

hedron, one of the Kepler–Poinsot geometric polyhedra, and

denote it by f52 ; 3g.

3.3. Geometric faces

Here we describe four different families of realizations –

spherical, convex, star and skew – classified according to the

geometry and relative arrangements of their associated open

sets. These were chosen to demonstrate the capability of

Theorem 3.1 to later produce a realization for each of the

regular H3 polyhedra in Table 1. It is important to note that

other families of open sets may also be chosen and the four

enumerated here are by no means the only options available.

3.3.1. Spherical realization. Since orthogonal matrices are

isometric, a sphere is a natural space for a geometric poly-

hedron to inhabit. For a spherical realization denoted by �sp,

we define the base geometric vertex as a point on the surface

of a fixed sphere, the base geometric edge as an open great

circular arc, the base geometric facet as an open spherical

polygon and the geometric cell as the sphere’s interior.

Observe that the geometric faces excluding the cell tile the

surface of the sphere. Thus, we may regard a spherical reali-

zation as a covering of the surface of a sphere by spherical

polygons.

3.3.2. Convex and star realizations. Suppose that, in a

spherical realization, we set the base geometric edge to be an

open line segment instead of a spherical arc. Provided that the

resulting bounding edges of the base geometric facet are

coplanar, we may define a classical realization which is either

convex and denoted by �co or star and denoted by �st. If a pair

of edges (or facets) intersect, we set the base geometric facet

(cell) to be the union of disconnected open regions bounded

by its incident edges (facets). Otherwise, we define it as the

interior of the convex hull of these edges (facets).

The presence of intersecting edges or facets characterizes a

star realization. That is, the resulting star polyhedron is

polymorphic and has a cell which generally consists of the

union of two or more distinct open regions in space (Johnson,

2008).

The convexity of the resulting geometric polyhedron, on the

other hand, characterizes a convex realization. That is, a

convex polyhedron is a solid where each geometric i-face is

the interior of the convex hull of its bounding geometric

(i � 1)-faces.

3.3.3. Skew realization. Consider the scenario in which the

geometric edges are open line segments as in a convex or a star

realization, but the resulting bounding edges of the base

geometric facet are non-coplanar. In this case, we set the base

geometric facet to be the interior of the minimal surface (local

area-minimizing surface) obtained by solving Plateau’s

problem on the facet’s bounding edges (Hass, 1991). A

physical model of this minimal surface is the soap film

obtained by dipping a wire frame bent into the shape of the

base facet’s boundary into a soap solution. This gives rise to

what we now refer to as a skew realization �sk. Such a reali-

zation results in a polyhedron with facets that are curved as

opposed to planar.

4. Regular geometric H3 polyhedra

The method discussed in Theorem 3.1 allows one to reproduce

the spherical and classical realizations of the abstract regular

H3 polyhedra and lets one construct non-standard realizations.

Applying formula (11) to the string C-groups in Table 1

yields six abstract polyhedra with non-zero Wythoff dimen-
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Table 2
Full rank geometric realizations of {3, 5}*120 (v = 12, e = 30, f = 20) with
the base facet and its boundary highlighted.

’i �sp �co/�st

’1

(a) Spherical icosahedron (b) Convex icosahedron

’2

(c) Spherical great icosahedron (d) Star great icosahedron



sion: {3, 5}*120, {5, 3}*120, {5, 5}*120, {6, 5}*120c, {10, 3}*120b

and {10, 5}*120b. These realizable polyhedra have a one-

dimensional Wythoff space for either representation

’1, ’2 and, consequently, will give rise to 12 spherical

and 12 non-spherical (convex, star or skew) realizations.

The resulting geometric polyhedra are rendered as solid

figures using Mathematica (Wolfram Research, 2018) and

presented in Tables 2–4 and 6–8. The number of vertices v,

edges e and facets f of these polyhedra are also indicated in the

tables.

The spherical realizations correspond to covers of the unit

sphere by spherical projections of planar triangles, pentagons,

pentagrams, skew hexagons and skew decagons. Some of these

projected polygons cover the sphere only once [see Tables

2(a), 3(a), 3(c) and 4(c)] and hence generate a regular sphe-

rical tessellation.

The classical realizations consist of two convex polyhedra:

the icosahedron [Table 2(b)] and the dodecahedron [Table

3(b)] with a triangle and a pentagon, respectively, as a facet;

and the four Kepler–Poinsot star polyhedra: the great icosa-

hedron f3; 5
2g [Table 2(d)], the great stellated dodecahedron

f52 ; 3g [Table 3(d)], the great dodecahedron f5; 5
2g [Table 4(b)]

and the small stellated dodecahedron f52 ; 5g [Table 4(d)],

with a triangle, a pentagram, a pentagon and a pentagram,

respectively, as a facet. These star polyhedra are also referred

to as the stellations of the convex icosahedron and dodeca-

hedron and may be constructed alternatively by extending the

facets of the latter until they intersect and form the facets of

the former.

To illustrate the similarities and differences between a

spherical and a classical realization, we take the polyhedron

{5, 3}*120 and embed its realization under �st in Illustration 3.2
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Figure 4
(a) The base geometric facet of �sk({10, 3}*120b) with (b) one and (c) two of its symmetric copies, bounding a set in space with non-zero volume. For ease
of visualization, the facets are embedded inside a skeletal dodecahedron which shares the same geometric vertices as this realization.

Table 3
Full rank geometric realizations of {5, 3}*120 (v = 20, e = 30, f = 12) with
the base facet and its boundary highlighted.

’i �sp �co/�st

’1

(a) Spherical dodecahedron (b) Convex dodecahedron

’2

(c) Spherical great stellated
dodecahedron

(d) Star great stellated
dodecahedron

Table 4
Full rank geometric realizations of {5, 5}*120 (v = 12, e = 30, f = 12) with
the base facet and its boundary highlighted.

’i �sp �co/�st

’1

(a) Spherical great dodecahedron (b) Star great dodecahedron

’2

(c) Spherical small stellated
dodecahedron

(d) Star small stellated
dodecahedron



inside its realization under �sp. We present the embedded

figures in Fig. 3(d). We also highlight the planar pentagram

facet in the star polyhedron and its projection on the unit

sphere in the spherical polyhedron. Note how the edges in

both polyhedra intersect at points which do not correspond to

vertices.

None of {6, 5}*120c, {10, 3}*120b or {10, 5}*120b admit a

convex or a star realization since their base geometric facets

have non-coplanar bounding edges. By

implementing a simple numerical iterative

algorithm based on the finite-element

method, we obtain a minimal surface as the

base facet of each of these polyhedra. For

instance, when this algorithm is applied to

{10, 3}*120b, we obtain the skew decagon

facet in Fig. 4 and the geometric polyhedron

in Table 7(b). The other five geometric

realizations are displayed in Tables 6, 7 and

8. Their facets, which are either skew hexa-

gons or skew decagons, are shown in Table 5.

It is worth mentioning that 12 of the

geometric H3 polyhedra enumerated above

can be related to one another by three

mixing operations: duality, Petrie operation

and facetting. Each of these operations can

be applied to a string C-group to obtain a

new group that corresponds to a new

geometric polyhedron. Applying a finite

sequence of such operations to, say, the

icosahedron yields the dodecahedron, the

four Kepler–Poinsot polyhedra and their six

Petrials. The reader is referred to Chapter

7E of McMullen & Schulte (2002) for a detailed discussion of

these operations.

5. Conclusions and future outlook

This study has demonstrated a method of producing a full rank

geometric realization of an abstract regular polyhedron.

Existing work on realizations emphasizes their algebraic
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Table 7
Full rank geometric realizations of {10, 3}*120b (v = 20, e = 30, f = 6) with
the base facet and its boundary highlighted.

’i �sp �sk

’1

’2

Table 5
Geometric base facets of the skew realizations of {6, 5}*120c, {10, 3}*120b and {10, 5}*120b.

’i {6, 5}*120c {10, 3}*120b {10, 5}*120b

’1

’2

Table 6
Full rank geometric realizations of {6, 5}*120c (v = 12, e = 30, f = 10) with
the base facet and its boundary highlighted.

’i �sp �sk

’1

’2



aspects. For instance, the articles by McMullen (1989, 2011,

2014), McMullen & Monson (2003) and Ladisch (2016) focus

on the structure of the realization cone or the set of all

realizations of a given polytope up to congruence. In contrast,

we have highlighted their geometric aspects by identifying the

realizations with their images as solid figures in space.

Adapted from Wythoff construction, the method

presented in this study is algorithmic in nature and hence

well suited for computer implementation. This was exhibited

when we applied the method to abstract regular polyhedra

with automorphism group isomorphic to H3. The entire

process involved enumerating the abstract regular H3 poly-

hedra through a search algorithm in GAP and using the

irreducible orthogonal representations of H3 to generate the

corresponding figures of their geometric realizations in

Mathematica. This allowed us to reproduce the classical

convex and star polyhedra with icosahedral symmetry, as well

as non-standard icosahedral polyhedra with minimal surfaces

as facets. We reiterate that we do not limit ourselves to the

families of open sets listed in Section 3.3 when considering a

realization.

We remark that even though we have applied the method

only to the abstract regular H3 polyhedra, the method is also

applicable to other regular polyhedra and may be extended to

polytopes of higher rank. In particular, one may apply the

method to regular polyhedra arising from the groups An, Bn

and Hn (Humphreys, 1992). For future work, it is worthwhile

considering establishing an analogous construction method

for the realizations of abstract semiregular polytopes using a

version of Wythoff construction found in Monson & Schulte

(2012) as a framework.
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Table 8
Full rank geometric realizations of {10, 5}*120b (v = 12, e = 30, f = 6) with
the base facet and its boundary highlighted.

’i �sp �sk

’1

’2
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